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ABSTRACT 

One of the most expensive and time-consuming aspects of data 
management is the programming of validation rules to check for 
data values that may be incorrect.  Validation rules – also known 
as “edit checks” – are essential for cleaning data that has been 
captured on paper forms (or via any method that allows invalid 
values to be recorded).  The pharmaceutical industry, for 
example, relies heavily on validation rules to clean research data 
captured on paper forms at hospitals and clinics.  There are many 
kinds of validation rules, including range checks, valid value 
checks, missing value checks, and checks for consistency 
between two or more variables.  Implementing these kinds of 
checks through custom code is standard practice in many 
organizations, despite the high cost of creating and validating 
custom programs.  A data-driven approach – especially one that 
handles multivariate consistency checks – can radically decrease 
the time and expense involved in creating custom validation rules.  
This paper describes a data-driven system for creating and 
applying validation rules to locate questionable data values in 
SAS datasets.  

INTRODUCTION  

Although paperless methods for entering data are increasingly 
common, there are still many contexts in which data is first 
captured on paper and then transferred to computer through 
some kind of transcription process.  Unfortunately, capturing data 
in this way offers two golden opportunities for introducing error.  
Mistakes can be made when the original paper forms are filled 
out, and additional mistakes can be made when the data are 
transcribed from the forms to produce computer files.   
 
To reduce the rate of error in transcribed data files, they are often 
subjected to a cleaning process, the purpose of which is to locate 
and correct erroneous values.  There are a variety of methods for 
searching out erroneous values, but one common technique is to 
define and apply a set of “validation rules” (also know as “edit 
checks”).  A validation rule is a condition that involves one or 
more data values.  If the data values fail to satisfy the condition, 
they are considered “questionable” and are candidates for closer 
scrutiny.   
 
Creating and applying validation rules is an important standard 
practice in the pharmaceutical industry, which generates large 
amounts of research data, most of which is collected on paper 
forms in hospitals and clinics.  Pharma companies conduct 
thousands of studies each year.  For the most part, validation 
rules have to be created independently for each study, because 
the kinds of data collected vary greatly from one study to the next.  
As a result, pharmaceutical companies and clinical research 
organizations often have programmers on staff who spend a 
major portion of their work time implementing validation rules.  
Each study gets its own set of customized validation programs.  
This practice is expensive and time-consuming.   
 
An alternative to customized programs is to represent validation 
rules as “data” that can be interpreted and applied by a generic 
program.   There are four essential components for such a 
system: 

 

1. A schematic way of representing validation rules. 
2. A component that allows users to enter and maintain 

validation rules. 
3. A component that interprets and applies the previously 

entered validation rules to a set of “target” datasets.  
4. A component that outputs information about data 

values that fail the validation rules.   
 
There are many ways of implementing such a system.  This paper 
describes one approach, which makes use of Microsoft Excel for 
entering and maintaining validation rules, SAS macro language 
for interpreting and applying them, and Proc SQL for reporting on 
rule failures. 
 
The system discussed in this paper was developed for internal 
use at Ursa Logic Corporation.  The goal of the development 
project was to simplify, streamline, and standardize the process of 
creating customized validation rules for large collections of data 
stored in SAS datasets.  To facilitate the presentation, the system 
is referred to in this paper as the Data Checker.   
 
Before turning to the system itself, it may be helpful to say a few 
words about the variety of rules supported by the Data Checker. 

TYPES OF VALIDATION RULES 

Validation rules can be divided into two categories: those that 
involve one variable (univariate rules) and those that involve 
multiple variables (multivariate rules).   There are three common 
types of univariate rules.   
 
A range check is a rule stating that a data value must fall within a 
given range.  Here are some examples: 
 

• WEIGHT must be between 100 and 200 pounds. 

• BIRTH DATE must be between 01JAN1965 and 
31DEC1990. 

 
A valid-value check is a rule stating that a data value must equal 
one of a set of specified values.  Here are some examples: 
 

• SEX must equal “M” or “F”. 

• STATE must equal “NC”  or “SC” or “GA” or “FL” 
 
A missing-value check is a rule stating that a variable is 
required, (i.e., it cannot have a missing value).  
 
Univariate rules by themselves can locate a large percentage of 
the errors in a database, but there are many situations in which it 
is also useful to compare the values of two or more variables to 
determine if they are mutually consistent, or if they meet some 
criteria when combined.  Here are some examples of multivariate 
rules: 
 



 

 

• LENGTH times WIDTH must equal AREA. 

• PHYSICAL EXAM DATE must be less than or equal to 
INVESTIGATOR SIGNATURE DATE 

• WEIGHT at follow-up visit must not differ by more than 
25% from WEIGHT at baseline visit. 

 
Multivariate rules can be divided into three types based on how 
many datasets and records are involved in the rule.  A within-
record rule involves variables that are all on the same record.  It 
is the easiest type of multivariate rule to implement.  Greater 
programming challenges are presented by cross-record rules, 
which involve variables that are on different records within the 
same dataset, and cross-table rules, which involve variables in 
multiple datasets. 

A RULE SPECIFICATION SCHEME 

One requirement for the Data Checker was that it be capable of 
handling all the types of validation rules described above.  The 
first step in achieving that goal was to devise a scheme for 
specifying rules as data.  The specification format had to be 
simple enough to be used by the intended users, but rich enough 
to express the full range of common validation rules, and the 
specifications had to accomplish all of the following: 
 

• Identify the variable(s) involved in a rule. 

• Identify where the variable(s) could be found 

• Identify the condition that the variable(s) were expected 
to meet 

• Specify an appropriate message to alert users of a rule 
failure 

 
During analysis work for the Data checker a choice was made to 
limit the scope of the system to rules that involve only one or two 
datasets.  This constraint simplified the specification scheme 
appreciably without giving up much in the way of needed 
functionality.  It is possible to conceive of rules that combine 
variables from three or more datasets, but this rarely happens in 
practice.   
 
Given the limitation to two datasets, it was determined that all 
univariate rules and multivariate rules could be fully characterized 
using the following set of fields: 
 

RuleID: A unique identifier for the rule. 
Description: A free-form description of the rule. 
DatasetA: The name of the first target dataset 

involved in the rule.  (Or the only dataset, 
in the case of univariate and within-record 
rules.) 

FilterA: Used to define a filter condition for 
DatasetA.  Filters are useful for rules that 
apply to only a subset of the records in a 
dataset.   

KeyVariablesA: A comma-delimited list of the variable(s) 
that form unique keys for records in 
DatasetA. 

RuleVariablesA: A comma-delimited list of the variable(s) 
from DatasetA that are involved in the 
rule. 

DatasetB: The name of the second target dataset 
involved in the rule.   

FilterB: A filter condition for DatasetB.     
KeyVariablesB: A comma-delimited list of the variable(s) 

that form unique keys for records in 

DatasetB. 
RuleVariablesB: A comma-delimited list of the variable(s) 

from DatasetB that are involved in the 
rule. 

MergeVariables: A comma-delimited list of the variables 
that are used to join records from 
DatasetA to records in DatasetB. 

GoodCondition: The condition that the target variable(s) 
are expected to meet. 

FailureMessage: A message that is output when data 
values are found that fail the rule.  

Note that some of the fields are optional and can be left blank.  
The fields associated with Dataset B and the field containing 
merge variables are used only for cross-record and cross-table 
rules.  The fields for defining filters are used for rules that apply 
only to a subset of the records in a dataset. 

SAMPLE RULE SPECIFICATIONS 

To illustrate the specification scheme in action, two sample rules 
will be described in detail – one univariate rule and one 
multivariate rule.   The sample rules will be used throughout the 
remaining sections to clarify programming techniques used in the 
Data Checker. 

SAMPLE WEIGHT RANGE RULE 

Health-related studies often include weight restrictions in the 
eligibility criteria for potential subjects.  Expressed in English, a 
typical weight range rule would look something like this: 
 

Subject weight must be equal to or greater than 100 pounds 
and less than or equal to 200 pounds. 

 
Assume that the value for subject weight is stored in a variable 
called WEIGHT which is found in a dataset called PHYSEXAM.  
Assume also that, in this particular study, weight may be recorded 
in either pounds or kilograms.  A variable called WEIGHTU 
identifies the unit of measurement.  It is set to “L” for pounds and 
“K” for kilograms.   
 
The sample validation rule applies only to records that have 
weight recorded in pounds.  (A separate rule would be created for 
records that have weight in kilograms.)  Expressed using the Data 
checker specification scheme, the rule would look something like 
this: 
 

RuleID: Phys-4 
Description: Subject weight in pounds should be 

between 100 and 200. 
DatasetA: PHYSEXAM 
FilterA: WEIGHTU = “L” 
KeyVariablesA: SUBJECT,VISIT 
RuleVariablesA: WEIGHT 
Dataset:B  
FilterB:  
KeyVariablesB:  
RuleVariablesB:  
MergeVariables:  
GoodCondition: 100 LE WEIGHT LE 200 
FailureMessage: Subject weight is not within the expected 

range (100 to 200 lbs). 
 
Only one dataset is involved in this rule, so the four fields for 
specifying information about Dataset B are blank, as is the field 



 

 

for specifying merge variables. 

SAMPLE DATE COMPARISON RULE 

The data collected for health-related studies typically include a 
large number of dates.  Many validation rules are created to 
check relationships among dates – to confirm, for example, that 
clinic exams occurred in the expected order, or to verify that a 
physical exam took place before the investigator signed off on the 
data collection forms.  Expressed in English, a typical date 
comparison rule would look something like this: 
 

The physical exam must be dated on or before the date of 
the investigator’s signature. 
 

Assume that the date of the physical exam is stored in a variable 
called PHEXDT in the dataset PHYSEXAM, and the date of the 
investigator’s signature is stored in a variable called SIGDATE in 
the dataset INVSIG.  Expressed using the Data Checker 
specification scheme, the rule would look something like this: 
 

RuleID: Phys-1 
Description: Physical exam date should precede or 

equal investigator’s signature date.  
DatasetA: PHYSEXAM 
FilterA:  
KeyVariablesA: SUBJECT,VISIT 
RuleVariablesA: PHEXDT 
Dataset:B INVSIG 
FilterB:  
KeyVariablesB: SUBJECT 
RuleVariablesB: SIGDATE 
MergeVariables: SUBJECT 
GoodCondition: B.SIGDATE GE A.PHEXDT 
FailureMessage: Date of physical exam is after date of 

investigator’s signature. 
 
In this case, all fields are used except for the filters.  Note that in 
the specification for GoodCondition, variable names are preceded 
by “a.” or “b.” to identify which dataset they belong to.  The 
prefixing of the variables is an important part of the syntax for 
multivariate rules, as will become clear in the sections below. 

PERSISTENT STORAGE FOR RULES  

The rule specification scheme described above is the first 
essential component of the Data Checker.  The second is a 
method of entering, storing, and maintaining rules using the 
conventions of the specification scheme. 
 
Because the rules are represented as values in a set of fields, any 
technology that allows data to be entered through a table-like 
interface would be suitable for implementing the second 
component.  One possibility is to store the rules in SAS datasets 
and build a rule-entry application using SAS AF.  This approach 
could be used to provide a user interface that is extremely user-
friendly, with selection lists for names of datasets and variables, 
as well as immediate error-trapping.   
 
Spreadsheets are also good candidates for entering specifications 
arranged in a tabular format.  The spreadsheet interface is 
familiar to many computer users and a serviceable rule-entry 
system can be set up in a matter of hours.   
 
In order to minimize the development timeframe, the spreadsheet 
approach was adopted for the Data Checker.  Microsoft Excel was 

used to create a tool for entering validation rules.  The Excel 
spreadsheet serves as input to the third component of the Data 
Checker, which was developed using Base SAS. 

BASIC SYSTEM LOGIC 

With specification syntax in place and a method for entering and 
storing validation rules, only two components remain to be 
considered: a component that can interpret rule specifications and 
apply them to target datasets, and a component to output 
information about data values that fail validation rules. 
 
For the Data Checker, both of these components are provided by 
a single program written in Base SAS.  The logic of the program is 
shown in the flowchart below. 
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IMPORTING RULES FROM EXCEL 

Importing the validation rules from Excel to SAS is straightforward 
using Proc Import.  Assume that the rules are contained in an 
Excel spreadsheet called RULES.XLS in the directory 
C:\PROJECT\DATA.  The statements below copy the 
spreadsheet data to a SAS dataset called RULES.   The 
GETNAMES statement tells SAS to use text values in the first row 
of the spreadsheet as variable names.  



 

 

 
proc import out=work.rules  
 datafilez= "C:\project\data\Rules.xls"  
 dbms=EXCEL2000 replace; 
 getnames=YES; 

LOOPING THROUGH RULES 

After the rules are captured in a SAS dataset the Data Checker 
must loop through the rules and apply each in turn to the relevant 
target datasets.  The looping is accomplished using the SAS 
macro language.   
 
The macro ApplyRules, shown below, starts by counting the rules 
and storing the result in &ruleCount.  It then executes a macro 
loop, processing one rule with each pass through the loop.   
During each pass the macro loads the specifications for the 
current rule into a set of macro variables.  It then uses the 
variables to construct a Proc SQL statement that produces a table 
containing all data values that fail the rule.  It executes the Proc 
SQL statement and then prints the result table.   
 
 
%macro ApplyRules; 

* Set a macro variable with rules count; 
proc sql noprint; 
 select count(*) into :ruleCount 
 from rules; 
 quit; 
 
* Loop through the rules; 
%do i = 1 %to &ruleCount; 
 * Load rule specifications into macro 
  * variables; 
 proc sql noprint; 
   select ruleID, description,  
   datasetA, filterA, 
   idVariablesA, ruleVariablesA, 
   datasetB, filterB, 
   idVariablesB, ruleVariablesB, 
   goodCondition, failureMessage 
  into :ruleID, :description,  
   :datasetA, :filterA,  
   :idVariablesA, ruleVariablesA, 
   :datasetB, :filterB,  
   :idVariablesB, ruleVariablesB, 
   :goodCondition, :failureMessage 
    from rules (firstobs=&i); 
  quit; 
 
 * Construct a Proc SQL statement to  
 * produce a table of rule failures; 
 proc sql 
  create table ruleFailures as  
  [select clause ...] 
  [from clause ...] 
  [where clause ...] 
  quit; 
 
 * Print the table; 
 proc print data=ruleFailures; 
  title1 “Rule ID: &ruleID”: 
 run; 
  
%end; 

%mend ApplyRules; 
 

CONSTRUCTING PROC SQL STATEMENTS 

The bulk of the work in the Data Checker is accomplished by 
constructing a customized Proc SQL statement for each stored 
validation rule.  Before delving into the macro code that is used to 
construct these statements, it may be useful to see examples of 
what the macro code needs to accomplish.   
 
For the sample weight range rule, the Data Checker needs to 
generate Proc SQL code that looks like this: 
 

proc sql; 
 create table ruleFailures as  
 select a.SUBJECT, a.VISIT, a.WEIGHT, 
  "Subject weight is not within the 
  expected range (100 – 200 lbs)."  
  as failureMessage 
 from datalib.PHYSEXAM 
  (where=(WEIGHTU = "L")) a  
 where not (100 LE WEIGHT LE 200); 
 quit; 
 

When executed, the statements above will produce a table of rule 
failures, if there are any.  The table will look like this: 
 

subject visit weight failureMessage 

11MN16 1 98 Subject weight is not within the 
expected range (100 – 200 lbs). 

11MN16 3 212 Subject weight is not within the 
expected range (100 – 200 lbs). 

 
For the date comparison rule, the Data Checker needs to 
generate Proc SQL code that looks like this: 
 

proc sql; 
 create table ruleFailures as  
 select a.SUBJECT as a_SUBJECT,  
  a.VISIT as a_VISIT,  
  a.PHEXDT as a_PHEXDT,  
  b.SUBJECT as b_SUBJECT,  
  b.SIGDATE as b_SIGDATE,  
  "Date of physical exam is after date 
  of investigator signature."  
  as failureMessage  
 from datalib.PHYSEXAM a, datalib.INVSIG b 
 where a.SUBJECT=b.SUBJECT  
  and not (B.SIGDATE GE A.PHEXDT ); 
 quit; 

 
Note that, in this case, the select clause renames most of the 
selected variables by adding a prefix of either “a_” or “b_”.   The 
prefixes are added because the validation rule involves variables 
from two datasets.  In the result table, shown below, the prefixes 
identify which variables were pulled from each dataset.  The “a_” 
variables came from the first dataset (PHYSEXAM) and the “b_” 
variables came from the second dataset (INVSIG). 
 
a_subject a_visit a_phexdt b_subject b_sigdate failureMessage

11MN16 1 8/1/94 11MN16 10/16/93 Date of . . . 

11MN16 2 12/9/93 11MN16 10/16/93 Date of . . . 

11MN16 3 2/9/95 11MN16 10/16/93 Date of . . . 

 
The two examples illuminate the central task of the Data Checker.  
For each stored validation rule, the macro code must dynamically 
generate appropriate Proc SQL statements based on the 
specifications for the rule.  This is accomplished by inserting 



 

 

macro statements in the three parts of the code that need to be 
customized: the select, from, and where clauses.   Before tackling 
the customized parts, however, the macro begins by generating 
the proc sql statement itself and the create clause, which are 
invariant: 
 

proc sql; 
 create table ruleFailures as  

CONSTRUCTING THE SELECT CLAUSE 

The select clause identifies variables that will be included in 
ruleFailures, the result table.  The macro inserts the select verb 
followed by the names of all dataset variables needed by the rule.  
These names were previously loaded into four macro variables: 
&idVariablesA, &ruleVariablesA, &idVariablesB, and 
&ruleVariablesB.  The macro must scan each of these macro 
variables, extract strings that represent names of dataset 
variables, and construct new strings that have the appropriate 
syntax for the select statement. 
 
For the sample weight range rule, the four macro variables have 
the following values: 
 
 &idVariablesA: SUBJECT,VISIT 
 &ruleVariablesA: WEIGHT 
 &idVariablesB: [blank] 
 &ruleVariablesB: [blank] 
 
Using these values the macro must construct the following string: 
 

a.SUBJECT, a.VISIT, a.WEIGHT, 
 
The task is a bit more challenging for the sample date comparison 
rule, because the dataset variables in the selection clause must 
also be renamed.  In this case the four macro variables have the 
following values: 
 

 &idVariablesA: SUBJECT,VISIT 
 &ruleVariablesA: PHEXDT 
 &idVariablesB: SUBJECT 
 &ruleVariablesB: SIGDATE  
 
Using these values the macro must construct the following 
strings: 
 

a.SUBJECT as a_SUBJECT,  
a.VISIT as a_VISIT,  
a.PHEXDT as a_PHEXDT,  
b.SUBJECT as b_SUBJECT,  
b.SIGDATE as b_SIGDATE, 
 

The macro code that performs these string manipulations makes 
use of several macro language techniques.  To aid in 
understanding these techniques and how they produce the 
desired result, a portion of the code is presented in the text box 
below, side-by-side with an interpretation in pseudo code.   
 
The macro logic assumes that each of the macro variables is 
either blank or contains a list of one or more variables names 
separated by commas.  The %scan function is used to extract a 
variable name from a given position in the list. 
 
The code block presented below deals with &idVariablesA only.  
In the complete program, this code block is followed by three 
similar code blocks that handle the variable names contained in 
&ruleVariablesA, &idVariablesB, and &ruleVariablesB. 
 
After the dataset variables have been inserted in the select 
clause, there is only one variable remaining to be added – a 
container for the failure message.  This variable is inserted by the 
following code fragment, which appears immediately after the four 
code blocks just described: 

 
"&failureMessage" as failureMessage 
 

Macro code: 
 
%let j=1; 
       
%let var= %scan(%quote 
 (&idVariablesA),1,%str(,)); 
 
%do %until (&var eq); 
 
   a.&var  
 
 
 
 %if &datasetB ne %then %do;  
  as a_&var 
 
 %end; 
 
  , 
 
 %let j=%eval(&j+1); 
 
 %let var=%scan(%quote 
  (&idVariablesA),&j,%str(,)); 
%end; 

Interpretation: 
 
set &j to 1 

 
set &var to the string in the 1st position of 
 the list in &idVariablesA 
 
do until &var is blank 
 

in the Proc SQL statement that is being 
constructed, insert “a.” followed by the 
value of &var 
 
if &datasetB is non-blank then do 

  insert “as a_” followed by the value 
  of &var 

end 
 
insert “,” 
 
add 1 to &j 
 

 set &var to the string in the &jth position 
  of the list in &idVariablesA             
end 



 

 

For the two sample rules, this resolves as follows: 
 

"Subject weight is not within the expected 
range (100 – 200 lbs)." as failureMessage 

 
"Date of physical exam is after date 
of investigator signature."  
as failureMessage  

CONSTRUCTING THE FROM CLAUSE 

Next to be tackled is the from clause, which identifies the target 
datasets that are involved in the rule and (hence) will provide 
input to the SQL procedure.   To construct this part of the SQL 
statement, the macro needs the values that were previously 
loaded into &datasetA, &filterA, &datesetB, and &filterB. 
 
The macro inserts the from verb followed by the name of the first 
dataset.  It then checks to see if a filter has been specified for the 
dataset.  If so, it constructs and inserts a where clause using the 
contents of &filterA.   Finally, the macro inserts “as a” to create an 
alias for the dataset.   (The alias is used in the select and where 
clauses).   
 
If the rule involves a second dataset, the same techniques are 
used to insert the name of the second dataset, a where clause (if 
a filter is specified), and an alias of “b”. 
 
Shown below is the macro code that accomplishes all of this. 
 

from 
 datalib.&datasetA 
 %if %quote(&filterA) ne %then %do; 
  (where=(&filterA)) 
 %end; 
    as a 
 
    %if &datasetB ne %then %do; 
     , datalib.&datasetB 
  %if %quote(&filterB) ne %then %do; 
   (where=(&filterB)) 
  %end; 
  as b 
 %end; 

 
Returning again to the two sample rules may help to clarify what 
is going on here.   For the sample weight range rule, the macro 
variables are set as follows: 
 
 %datasetA: PHYSEXAM 
 %filterA: WEIGHTU = “L” 
 %datasetB: [blank] 
 %filterB: [blank] 
 
On the basis of these specifications, the from clause generated by 
the macro looks like this: 
 

from datalib.PHYSEXAM 
 (where=(WEIGHTU = "L")) a  
 
 

The specifications for the sample date comparison rule involve 
two datasets but no filters: 
 
 %datasetA: PHYSEXAM 
 %filterA: [blank] 
 %datasetB: INVSIG 
 %filterB: [blank] 
 
These settings produce a from clause that looks like this: 

 
from datalib.PHYSEXAM a, datalib.INVSIG b 

CONSTRUCTING THE WHERE CLAUSE 

The last bit of SQL that needs to be customized is the where 
clause.  For rules that involve only one dataset, this clause is 
used for one purpose only, i.e., to find the subset of records that 
does NOT meet the specified “good” condition.  Only one macro 
substitution is needed to construct the clause.  The relevant 
setting for the sample weight range rule is: 
 
 &goodCondition: 100 LE WEIGHT LE 200 
 
The Data checker must uses the macro variable to construct the 
following where clause:  

 
where not (100 LE WEIGHT LE 200); 

 
The situation is more complex for rules that involve two datasets, 
because the where clause serves two purposes.  As above, it 
subsets records using the value of &goodCondition, but it also 
performs the joins necessary to combine data from the two 
datasets.   The macro variables involved in this construction are 
listed below, along with the values assigned to them for the 
sample date comparison rule: 
 
 &mergeVariables: SUBJECT 
 &goodCondtion: B.SIGDATE GE A.PHEXDT 
 
The Data checker uses these macro variables to construct the 
following where clause: 
 

where a.SUBJECT=b.SUBJECT  
 and not (B.SIGDATE GE A.PHEXDT); 

 
Techniques used to construct the where clause are similar to 
those used for the select clause, described above.   The %scan 
function is used to extract strings from the list in 
&mergeVariables, and each string is then used to construct a new 
string.  In this case, the new string has the form “a.[string] = 
b.[string]”.  These equivalencies – one for each merge variable – 
are the parts of the where clause that accomplish the joins 
between variable records.  After the joins are constructed, the 
negation of &goodCondition is added, along with a semi-colon to 
finish off the SQL statement.  The complete code block for 
constructing the where clause is as follows. 
 

where  
 %if &datasetB ne %then %do; 
  %let j=1; 
  %let andToken=; 
  %let var=%scan(%quote 
   &mergeVariables),1,%str(,)); 
  %do %while (&var ne); 
   &andToken a.&var=b.&var 
   %let j=%eval(&j+1); 
   %let var =%scan(%quote 
    &mergeVariables),&j,%str(,)); 
   %let andToken=and; 
  %end; 
  and 
 %end; 
 
 not (&goodCondition) 
; 

EXTENSIONS TO THE BASIC SYSTEM 



 

 

The Data Checker presented above is capable of detecting and 
reporting many kinds of potential data errors.  In many data 
management shops it can be used as is to eliminate work that is 
currently being accomplished through customized, single-use 
reporting programs.  However, some shops may need to extend 
the basic system to add additional functionality.    
 
Two particularly useful extensions are resolvable message tokens 
and rule builders.  Both of these extensions have been 
implemented at Ursa Logic using Base SAS and macro language 
statements.  The programming will not be detailed in this paper, 
but a description of the concepts and logic involved may be 
instructive for those who are interested in doing something 
similar. 

RESOLVABLE MESSAGE TOKENS 

The Data Checker allows users to specify a failure message – a 
text message that is automatically included on each record in the 
ruleFailures table.  Recall that the failure messages specified for 
the two sample rules were: 
 

Subject weight is not within the expected 
range (100 – 200 lbs). 
 
Date of physical exam is after date 
of investigator signature. 
 

In practice, it is often useful to customize failure messages with 
values taken from the target record.   Consider, for example, the 
ruleFailures table that was generated by the sample weight range 
rule.  The table is reproduced below:  
 

subject visit weight failureMessage 

11MN16 1 98 Subject weight is not within the 
expected range (100 – 200 lbs). 

11MN16 3 212 Subject weight is not within the 
expected range (100 – 200 lbs). 

 
Note that the failure messages are identical for the two 
questionable data values.  This may not always be desirable. 
 
Sometimes failure messages are copied verbatim into email 
messages or memoranda that are generated to request 
confirmation or correction of questionable values.  It may be 
useful in such cases for the Data Checker to produce a more 
complete English-language statement of the problem.  The 
messages for the two records above might be expanded to the 
following: 
 

The weight recorded for subject 11MN16 at Visit 1 is 98, 
which is not within the expected range (100 – 200 lbs). 

 
The weight recorded for subject 11MN16 at Visit 3 is 212, 
which is not within the expected range (100 – 200 lbs). 

 
These new messages have been customized with three data 
values taken from the target record: the subject number, the visit 
number, and the subject weight.  Customized failure messages 
such as these can be created by embedding standard tokens in 
the message specification and adding code to the Data Checker 
to resolve the tokens at run-time.  The following is an example of 
a tokenized message specification: 
 

The weight recorded for subject [subject] at Visit [visit] is 
[weight], which is not within the expected range (100 – 200 
lbs). 

 
Any number of different conventions can be employed to denote   

message tokens.  In this example, tokens are indicated by square 
brackets containing a field name.  The Data Checker resolves a 
token by replacing it with the value of the indicated field. 
 
One way to implement resolvable message tokens is to develop a 
stand-alone macro that can read a dataset, look for a field called 
failureMessage and perform the replacements necessary to 
expand the message text.  The macro is invoked immediately 
after the ruleFailures table is created.  A Shown below is a portion 
of the Data Checker system flowchart with the additional step 
added.  
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RULE BUILDERS 

Imagine a study in which each subject is examined six times over 
a period of twelve months.   The validation rules for the study 
database might include a rule like the following: 
 

Physical exam dates for a subject will be in ascending 
chronological order. 
 

This rule is expressed easily and concisely in English, but in order 
to represent it using the basic Data Checker specification 
scheme, it would have to be split into five separate rules: 
 

The date for exam 1 is less than the date for exam 2.  
The date for exam 2 is less than the date for exam 3.  
The date for exam 3 is less than the date for exam 4.  
The date for exam 4 is less than the date for exam 5.  
The date for exam 5 is less than the date for exam 6.  
 

Entering specifications for five rules is not too demanding, but 
suppose there were 100 exam dates that needed to be in 
sequential order, or that the exact number of exams was unknown 
at the time the rules were created.  In a situation like that, it would 
be handy to be able to create a “rule builder” that could generate 
the required validation rules at run-time, based on the exam visits 
that were actually recorded in the database. 
 
This scenario is an example of a situation that arises often 
enough to justify some additional programming support – rule sets 
that are easier to generate by a program than to enter by hand.  
The Data Checker developed at Ursa Logic includes a facility that 
allows rule builders to be defined and used in such situations.   
 
Rule builders are implemented as stand-alone macros.  Each rule 



 

 

builder takes a single rule specification as input and expands it 
into specifications for multiple rules.  To use a rule builder, the 
user creates a rule specification, as usual, but instead of entering 
an expression in the GoodCondition field, the user enters a call to 
the appropriate rule builder macro.  Here is an example of a rule 
specification that uses a rule builder: 
 

RuleID: Phys-3 
Description: Physical exam dates should be in 

chronological order.  
DatasetA: PHYSEXAM 
FilterA:  
KeyVariablesA: SUBJECT,VISIT 
RuleVariablesA: PHEXDT 
Dataset:B  
FilterB:  
KeyVariablesB:  
RuleVariablesB:  
MergeVariables:  
GoodCondition: %ASCENDING 
FailureMessage: Physical exam dates are not in 

chronological order. 
 
To incorporate rule builders, the Data Checker adds a pre-
processing step after the rules are imported from Excel, but 
before they are used to generate Proc SQL statements.  A portion 
of the system flow chart is shown below with the additional step 
inserted: 

Import rules from
Excel

Read the
specifications

for a rule

Validation rules
(SAS dataset)

Execute rule
builders

 
During the pre-processing step, the Data Checker loops through 
the rule specifications.  For each rule, it loads the rule 
specifications into macro variables, then checks to see if 
&goodCondition contains a call to a rule builder macro.  If so, it 
invokes the macro. 
 
The rule builder’s responsibility is to take the information loaded 
into the macro variables and use it to generate an entire set of 
validation rules.  The newly generated rules are then added to the 
list of rules that will be used to construct Proc SQL statements. 
 
The example above makes use of a rule builder called 
%ASCENDING.  This macro generates a set of rules to make 
sure that a target variable (PHEXDT, in the example) is in 
ascending order when the records are sorted according to the 
specified key variables.   Because %ASCENDING is completely 
generic, it can be reused over and over again across projects to 
simplify the process of specifying rules for fields that have 
ascending data values across records. 

CONCLUSION 

A system like the Data Checker can radically reduce the time and 
expense required to implement data validation rules for data 
cleaning projects.   As with any system that is designed for reuse 
across multiple projects, careful validation is necessary to ensure 
that the system performs as intended across the full range of 
possible uses.  The payoff for this effort is that a great deal of 
project-specific programming – and the attendant validation work– 
is eliminated.   
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