

Data-driven Validation Rules:
Custom Data Validation Without Custom Programming

Don Hopkins, Ursa Logic Corporation, Durham, NC

ABSTRACT

One of the most expensive and time-consuming aspects of data
management is the programming of validation rules to check for
data values that may be incorrect. Validation rules – also known
as “edit checks” – are essential for cleaning data that has been
captured on paper forms (or via any method that allows invalid
values to be recorded). The pharmaceutical industry, for
example, relies heavily on validation rules to clean research data
captured on paper forms at hospitals and clinics. There are many
kinds of validation rules, including range checks, valid value
checks, missing value checks, and checks for consistency
between two or more variables. Implementing these kinds of
checks through custom code is standard practice in many
organizations, despite the high cost of creating and validating
custom programs. A data-driven approach – especially one that
handles multivariate consistency checks – can radically decrease
the time and expense involved in creating custom validation rules.
This paper describes a data-driven system for creating and
applying validation rules to locate questionable data values in
SAS datasets.

INTRODUCTION

Although paperless methods for entering data are increasingly
common, there are still many contexts in which data is first
captured on paper and then transferred to computer through
some kind of transcription process. Unfortunately, capturing data
in this way offers two golden opportunities for introducing error.
Mistakes can be made when the original paper forms are filled
out, and additional mistakes can be made when the data are
transcribed from the forms to produce computer files.

To reduce the rate of error in transcribed data files, they are often
subjected to a cleaning process, the purpose of which is to locate
and correct erroneous values. There are a variety of methods for
searching out erroneous values, but one common technique is to
define and apply a set of “validation rules” (also know as “edit
checks”). A validation rule is a condition that involves one or
more data values. If the data values fail to satisfy the condition,
they are considered “questionable” and are candidates for closer
scrutiny.

Creating and applying validation rules is an important standard
practice in the pharmaceutical industry, which generates large
amounts of research data, most of which is collected on paper
forms in hospitals and clinics. Pharma companies conduct
thousands of studies each year. For the most part, validation
rules have to be created independently for each study, because
the kinds of data collected vary greatly from one study to the next.
As a result, pharmaceutical companies and clinical research
organizations often have programmers on staff who spend a
major portion of their work time implementing validation rules.
Each study gets its own set of customized validation programs.
This practice is expensive and time-consuming.

An alternative to customized programs is to represent validation
rules as “data” that can be interpreted and applied by a generic
program. There are four essential components for such a
system:

1. A schematic way of representing validation rules.
2. A component that allows users to enter and maintain

validation rules.
3. A component that interprets and applies the previously

entered validation rules to a set of “target” datasets.
4. A component that outputs information about data

values that fail the validation rules.

There are many ways of implementing such a system. This paper
describes one approach, which makes use of Microsoft Excel for
entering and maintaining validation rules, SAS macro language
for interpreting and applying them, and Proc SQL for reporting on
rule failures.

The system discussed in this paper was developed for internal
use at Ursa Logic Corporation. The goal of the development
project was to simplify, streamline, and standardize the process of
creating customized validation rules for large collections of data
stored in SAS datasets. To facilitate the presentation, the system
is referred to in this paper as the Data Checker.

Before turning to the system itself, it may be helpful to say a few
words about the variety of rules supported by the Data Checker.

TYPES OF VALIDATION RULES

Validation rules can be divided into two categories: those that
involve one variable (univariate rules) and those that involve
multiple variables (multivariate rules). There are three common
types of univariate rules.

A range check is a rule stating that a data value must fall within a
given range. Here are some examples:

• WEIGHT must be between 100 and 200 pounds.

• BIRTH DATE must be between 01JAN1965 and
31DEC1990.

A valid-value check is a rule stating that a data value must equal
one of a set of specified values. Here are some examples:

• SEX must equal “M” or “F”.

• STATE must equal “NC” or “SC” or “GA” or “FL”

A missing-value check is a rule stating that a variable is
required, (i.e., it cannot have a missing value).

Univariate rules by themselves can locate a large percentage of
the errors in a database, but there are many situations in which it
is also useful to compare the values of two or more variables to
determine if they are mutually consistent, or if they meet some
criteria when combined. Here are some examples of multivariate
rules:

• LENGTH times WIDTH must equal AREA.

• PHYSICAL EXAM DATE must be less than or equal to
INVESTIGATOR SIGNATURE DATE

• WEIGHT at follow-up visit must not differ by more than
25% from WEIGHT at baseline visit.

Multivariate rules can be divided into three types based on how
many datasets and records are involved in the rule. A within-
record rule involves variables that are all on the same record. It
is the easiest type of multivariate rule to implement. Greater
programming challenges are presented by cross-record rules,
which involve variables that are on different records within the
same dataset, and cross-table rules, which involve variables in
multiple datasets.

A RULE SPECIFICATION SCHEME

One requirement for the Data Checker was that it be capable of
handling all the types of validation rules described above. The
first step in achieving that goal was to devise a scheme for
specifying rules as data. The specification format had to be
simple enough to be used by the intended users, but rich enough
to express the full range of common validation rules, and the
specifications had to accomplish all of the following:

• Identify the variable(s) involved in a rule.

• Identify where the variable(s) could be found

• Identify the condition that the variable(s) were expected
to meet

• Specify an appropriate message to alert users of a rule
failure

During analysis work for the Data checker a choice was made to
limit the scope of the system to rules that involve only one or two
datasets. This constraint simplified the specification scheme
appreciably without giving up much in the way of needed
functionality. It is possible to conceive of rules that combine
variables from three or more datasets, but this rarely happens in
practice.

Given the limitation to two datasets, it was determined that all
univariate rules and multivariate rules could be fully characterized
using the following set of fields:

RuleID: A unique identifier for the rule.
Description: A free-form description of the rule.
DatasetA: The name of the first target dataset

involved in the rule. (Or the only dataset,
in the case of univariate and within-record
rules.)

FilterA: Used to define a filter condition for
DatasetA. Filters are useful for rules that
apply to only a subset of the records in a
dataset.

KeyVariablesA: A comma-delimited list of the variable(s)
that form unique keys for records in
DatasetA.

RuleVariablesA: A comma-delimited list of the variable(s)
from DatasetA that are involved in the
rule.

DatasetB: The name of the second target dataset
involved in the rule.

FilterB: A filter condition for DatasetB.
KeyVariablesB: A comma-delimited list of the variable(s)

that form unique keys for records in

DatasetB.
RuleVariablesB: A comma-delimited list of the variable(s)

from DatasetB that are involved in the
rule.

MergeVariables: A comma-delimited list of the variables
that are used to join records from
DatasetA to records in DatasetB.

GoodCondition: The condition that the target variable(s)
are expected to meet.

FailureMessage: A message that is output when data
values are found that fail the rule.

Note that some of the fields are optional and can be left blank.
The fields associated with Dataset B and the field containing
merge variables are used only for cross-record and cross-table
rules. The fields for defining filters are used for rules that apply
only to a subset of the records in a dataset.

SAMPLE RULE SPECIFICATIONS

To illustrate the specification scheme in action, two sample rules
will be described in detail – one univariate rule and one
multivariate rule. The sample rules will be used throughout the
remaining sections to clarify programming techniques used in the
Data Checker.

SAMPLE WEIGHT RANGE RULE

Health-related studies often include weight restrictions in the
eligibility criteria for potential subjects. Expressed in English, a
typical weight range rule would look something like this:

Subject weight must be equal to or greater than 100 pounds
and less than or equal to 200 pounds.

Assume that the value for subject weight is stored in a variable
called WEIGHT which is found in a dataset called PHYSEXAM.
Assume also that, in this particular study, weight may be recorded
in either pounds or kilograms. A variable called WEIGHTU
identifies the unit of measurement. It is set to “L” for pounds and
“K” for kilograms.

The sample validation rule applies only to records that have
weight recorded in pounds. (A separate rule would be created for
records that have weight in kilograms.) Expressed using the Data
checker specification scheme, the rule would look something like
this:

RuleID: Phys-4
Description: Subject weight in pounds should be

between 100 and 200.
DatasetA: PHYSEXAM
FilterA: WEIGHTU = “L”
KeyVariablesA: SUBJECT,VISIT
RuleVariablesA: WEIGHT
Dataset:B
FilterB:
KeyVariablesB:
RuleVariablesB:
MergeVariables:
GoodCondition: 100 LE WEIGHT LE 200
FailureMessage: Subject weight is not within the expected

range (100 to 200 lbs).

Only one dataset is involved in this rule, so the four fields for
specifying information about Dataset B are blank, as is the field

for specifying merge variables.

SAMPLE DATE COMPARISON RULE

The data collected for health-related studies typically include a
large number of dates. Many validation rules are created to
check relationships among dates – to confirm, for example, that
clinic exams occurred in the expected order, or to verify that a
physical exam took place before the investigator signed off on the
data collection forms. Expressed in English, a typical date
comparison rule would look something like this:

The physical exam must be dated on or before the date of
the investigator’s signature.

Assume that the date of the physical exam is stored in a variable
called PHEXDT in the dataset PHYSEXAM, and the date of the
investigator’s signature is stored in a variable called SIGDATE in
the dataset INVSIG. Expressed using the Data Checker
specification scheme, the rule would look something like this:

RuleID: Phys-1
Description: Physical exam date should precede or

equal investigator’s signature date.
DatasetA: PHYSEXAM
FilterA:
KeyVariablesA: SUBJECT,VISIT
RuleVariablesA: PHEXDT
Dataset:B INVSIG
FilterB:
KeyVariablesB: SUBJECT
RuleVariablesB: SIGDATE
MergeVariables: SUBJECT
GoodCondition: B.SIGDATE GE A.PHEXDT
FailureMessage: Date of physical exam is after date of

investigator’s signature.

In this case, all fields are used except for the filters. Note that in
the specification for GoodCondition, variable names are preceded
by “a.” or “b.” to identify which dataset they belong to. The
prefixing of the variables is an important part of the syntax for
multivariate rules, as will become clear in the sections below.

PERSISTENT STORAGE FOR RULES

The rule specification scheme described above is the first
essential component of the Data Checker. The second is a
method of entering, storing, and maintaining rules using the
conventions of the specification scheme.

Because the rules are represented as values in a set of fields, any
technology that allows data to be entered through a table-like
interface would be suitable for implementing the second
component. One possibility is to store the rules in SAS datasets
and build a rule-entry application using SAS AF. This approach
could be used to provide a user interface that is extremely user-
friendly, with selection lists for names of datasets and variables,
as well as immediate error-trapping.

Spreadsheets are also good candidates for entering specifications
arranged in a tabular format. The spreadsheet interface is
familiar to many computer users and a serviceable rule-entry
system can be set up in a matter of hours.

In order to minimize the development timeframe, the spreadsheet
approach was adopted for the Data Checker. Microsoft Excel was

used to create a tool for entering validation rules. The Excel
spreadsheet serves as input to the third component of the Data
Checker, which was developed using Base SAS.

BASIC SYSTEM LOGIC

With specification syntax in place and a method for entering and
storing validation rules, only two components remain to be
considered: a component that can interpret rule specifications and
apply them to target datasets, and a component to output
information about data values that fail validation rules.

For the Data Checker, both of these components are provided by
a single program written in Base SAS. The logic of the program is
shown in the flowchart below.

Use the macro
variables to

construct a Proc
SQL statement
that produces a

table of rule
failures

Target datasets

Rule failures
Print the table

Load the rule
specifications into
macro variables

Import rules
from Excel

Read the
specifications

for a rule

Validation rules
(SAS dataset)

Validation rules
(Excel)

Start

Start

More rules?

No

Yes

IMPORTING RULES FROM EXCEL

Importing the validation rules from Excel to SAS is straightforward
using Proc Import. Assume that the rules are contained in an
Excel spreadsheet called RULES.XLS in the directory
C:\PROJECT\DATA. The statements below copy the
spreadsheet data to a SAS dataset called RULES. The
GETNAMES statement tells SAS to use text values in the first row
of the spreadsheet as variable names.

proc import out=work.rules
 datafilez= "C:\project\data\Rules.xls"
 dbms=EXCEL2000 replace;
 getnames=YES;

LOOPING THROUGH RULES

After the rules are captured in a SAS dataset the Data Checker
must loop through the rules and apply each in turn to the relevant
target datasets. The looping is accomplished using the SAS
macro language.

The macro ApplyRules, shown below, starts by counting the rules
and storing the result in &ruleCount. It then executes a macro
loop, processing one rule with each pass through the loop.
During each pass the macro loads the specifications for the
current rule into a set of macro variables. It then uses the
variables to construct a Proc SQL statement that produces a table
containing all data values that fail the rule. It executes the Proc
SQL statement and then prints the result table.

%macro ApplyRules;

* Set a macro variable with rules count;
proc sql noprint;
 select count(*) into :ruleCount
 from rules;
 quit;

* Loop through the rules;
%do i = 1 %to &ruleCount;
 * Load rule specifications into macro
 * variables;
 proc sql noprint;
 select ruleID, description,
 datasetA, filterA,
 idVariablesA, ruleVariablesA,
 datasetB, filterB,
 idVariablesB, ruleVariablesB,
 goodCondition, failureMessage
 into :ruleID, :description,
 :datasetA, :filterA,
 :idVariablesA, ruleVariablesA,
 :datasetB, :filterB,
 :idVariablesB, ruleVariablesB,
 :goodCondition, :failureMessage
 from rules (firstobs=&i);
 quit;

 * Construct a Proc SQL statement to
 * produce a table of rule failures;
 proc sql
 create table ruleFailures as
 [select clause ...]
 [from clause ...]
 [where clause ...]
 quit;

 * Print the table;
 proc print data=ruleFailures;
 title1 “Rule ID: &ruleID”:
 run;

%end;

%mend ApplyRules;

CONSTRUCTING PROC SQL STATEMENTS

The bulk of the work in the Data Checker is accomplished by
constructing a customized Proc SQL statement for each stored
validation rule. Before delving into the macro code that is used to
construct these statements, it may be useful to see examples of
what the macro code needs to accomplish.

For the sample weight range rule, the Data Checker needs to
generate Proc SQL code that looks like this:

proc sql;
 create table ruleFailures as
 select a.SUBJECT, a.VISIT, a.WEIGHT,
 "Subject weight is not within the
 expected range (100 – 200 lbs)."
 as failureMessage
 from datalib.PHYSEXAM
 (where=(WEIGHTU = "L")) a
 where not (100 LE WEIGHT LE 200);
 quit;

When executed, the statements above will produce a table of rule
failures, if there are any. The table will look like this:

subject visit weight failureMessage

11MN16 1 98 Subject weight is not within the
expected range (100 – 200 lbs).

11MN16 3 212 Subject weight is not within the
expected range (100 – 200 lbs).

For the date comparison rule, the Data Checker needs to
generate Proc SQL code that looks like this:

proc sql;
 create table ruleFailures as
 select a.SUBJECT as a_SUBJECT,
 a.VISIT as a_VISIT,
 a.PHEXDT as a_PHEXDT,
 b.SUBJECT as b_SUBJECT,
 b.SIGDATE as b_SIGDATE,
 "Date of physical exam is after date
 of investigator signature."
 as failureMessage
 from datalib.PHYSEXAM a, datalib.INVSIG b
 where a.SUBJECT=b.SUBJECT
 and not (B.SIGDATE GE A.PHEXDT);
 quit;

Note that, in this case, the select clause renames most of the
selected variables by adding a prefix of either “a_” or “b_”. The
prefixes are added because the validation rule involves variables
from two datasets. In the result table, shown below, the prefixes
identify which variables were pulled from each dataset. The “a_”
variables came from the first dataset (PHYSEXAM) and the “b_”
variables came from the second dataset (INVSIG).

a_subject a_visit a_phexdt b_subject b_sigdate failureMessage

11MN16 1 8/1/94 11MN16 10/16/93 Date of . . .

11MN16 2 12/9/93 11MN16 10/16/93 Date of . . .

11MN16 3 2/9/95 11MN16 10/16/93 Date of . . .

The two examples illuminate the central task of the Data Checker.
For each stored validation rule, the macro code must dynamically
generate appropriate Proc SQL statements based on the
specifications for the rule. This is accomplished by inserting

macro statements in the three parts of the code that need to be
customized: the select, from, and where clauses. Before tackling
the customized parts, however, the macro begins by generating
the proc sql statement itself and the create clause, which are
invariant:

proc sql;
 create table ruleFailures as

CONSTRUCTING THE SELECT CLAUSE

The select clause identifies variables that will be included in
ruleFailures, the result table. The macro inserts the select verb
followed by the names of all dataset variables needed by the rule.
These names were previously loaded into four macro variables:
&idVariablesA, &ruleVariablesA, &idVariablesB, and
&ruleVariablesB. The macro must scan each of these macro
variables, extract strings that represent names of dataset
variables, and construct new strings that have the appropriate
syntax for the select statement.

For the sample weight range rule, the four macro variables have
the following values:

 &idVariablesA: SUBJECT,VISIT
 &ruleVariablesA: WEIGHT
 &idVariablesB: [blank]
 &ruleVariablesB: [blank]

Using these values the macro must construct the following string:

a.SUBJECT, a.VISIT, a.WEIGHT,

The task is a bit more challenging for the sample date comparison
rule, because the dataset variables in the selection clause must
also be renamed. In this case the four macro variables have the
following values:

 &idVariablesA: SUBJECT,VISIT
 &ruleVariablesA: PHEXDT
 &idVariablesB: SUBJECT
 &ruleVariablesB: SIGDATE

Using these values the macro must construct the following
strings:

a.SUBJECT as a_SUBJECT,
a.VISIT as a_VISIT,
a.PHEXDT as a_PHEXDT,
b.SUBJECT as b_SUBJECT,
b.SIGDATE as b_SIGDATE,

The macro code that performs these string manipulations makes
use of several macro language techniques. To aid in
understanding these techniques and how they produce the
desired result, a portion of the code is presented in the text box
below, side-by-side with an interpretation in pseudo code.

The macro logic assumes that each of the macro variables is
either blank or contains a list of one or more variables names
separated by commas. The %scan function is used to extract a
variable name from a given position in the list.

The code block presented below deals with &idVariablesA only.
In the complete program, this code block is followed by three
similar code blocks that handle the variable names contained in
&ruleVariablesA, &idVariablesB, and &ruleVariablesB.

After the dataset variables have been inserted in the select
clause, there is only one variable remaining to be added – a
container for the failure message. This variable is inserted by the
following code fragment, which appears immediately after the four
code blocks just described:

"&failureMessage" as failureMessage

Macro code:

%let j=1;

%let var= %scan(%quote
 (&idVariablesA),1,%str(,));

%do %until (&var eq);

 a.&var

 %if &datasetB ne %then %do;
 as a_&var

 %end;

 ,

 %let j=%eval(&j+1);

 %let var=%scan(%quote
 (&idVariablesA),&j,%str(,));
%end;

Interpretation:

set &j to 1

set &var to the string in the 1st position of
 the list in &idVariablesA

do until &var is blank

in the Proc SQL statement that is being
constructed, insert “a.” followed by the
value of &var

if &datasetB is non-blank then do

 insert “as a_” followed by the value
 of &var

end

insert “,”

add 1 to &j

 set &var to the string in the &jth position
 of the list in &idVariablesA
end

For the two sample rules, this resolves as follows:

"Subject weight is not within the expected
range (100 – 200 lbs)." as failureMessage

"Date of physical exam is after date
of investigator signature."
as failureMessage

CONSTRUCTING THE FROM CLAUSE

Next to be tackled is the from clause, which identifies the target
datasets that are involved in the rule and (hence) will provide
input to the SQL procedure. To construct this part of the SQL
statement, the macro needs the values that were previously
loaded into &datasetA, &filterA, &datesetB, and &filterB.

The macro inserts the from verb followed by the name of the first
dataset. It then checks to see if a filter has been specified for the
dataset. If so, it constructs and inserts a where clause using the
contents of &filterA. Finally, the macro inserts “as a” to create an
alias for the dataset. (The alias is used in the select and where
clauses).

If the rule involves a second dataset, the same techniques are
used to insert the name of the second dataset, a where clause (if
a filter is specified), and an alias of “b”.

Shown below is the macro code that accomplishes all of this.

from
 datalib.&datasetA
 %if %quote(&filterA) ne %then %do;
 (where=(&filterA))
 %end;
 as a

 %if &datasetB ne %then %do;
 , datalib.&datasetB
 %if %quote(&filterB) ne %then %do;
 (where=(&filterB))
 %end;
 as b
 %end;

Returning again to the two sample rules may help to clarify what
is going on here. For the sample weight range rule, the macro
variables are set as follows:

 %datasetA: PHYSEXAM
 %filterA: WEIGHTU = “L”
 %datasetB: [blank]
 %filterB: [blank]

On the basis of these specifications, the from clause generated by
the macro looks like this:

from datalib.PHYSEXAM
 (where=(WEIGHTU = "L")) a

The specifications for the sample date comparison rule involve
two datasets but no filters:

 %datasetA: PHYSEXAM
 %filterA: [blank]
 %datasetB: INVSIG
 %filterB: [blank]

These settings produce a from clause that looks like this:

from datalib.PHYSEXAM a, datalib.INVSIG b

CONSTRUCTING THE WHERE CLAUSE

The last bit of SQL that needs to be customized is the where
clause. For rules that involve only one dataset, this clause is
used for one purpose only, i.e., to find the subset of records that
does NOT meet the specified “good” condition. Only one macro
substitution is needed to construct the clause. The relevant
setting for the sample weight range rule is:

 &goodCondition: 100 LE WEIGHT LE 200

The Data checker must uses the macro variable to construct the
following where clause:

where not (100 LE WEIGHT LE 200);

The situation is more complex for rules that involve two datasets,
because the where clause serves two purposes. As above, it
subsets records using the value of &goodCondition, but it also
performs the joins necessary to combine data from the two
datasets. The macro variables involved in this construction are
listed below, along with the values assigned to them for the
sample date comparison rule:

 &mergeVariables: SUBJECT
 &goodCondtion: B.SIGDATE GE A.PHEXDT

The Data checker uses these macro variables to construct the
following where clause:

where a.SUBJECT=b.SUBJECT
 and not (B.SIGDATE GE A.PHEXDT);

Techniques used to construct the where clause are similar to
those used for the select clause, described above. The %scan
function is used to extract strings from the list in
&mergeVariables, and each string is then used to construct a new
string. In this case, the new string has the form “a.[string] =
b.[string]”. These equivalencies – one for each merge variable –
are the parts of the where clause that accomplish the joins
between variable records. After the joins are constructed, the
negation of &goodCondition is added, along with a semi-colon to
finish off the SQL statement. The complete code block for
constructing the where clause is as follows.

where
 %if &datasetB ne %then %do;
 %let j=1;
 %let andToken=;
 %let var=%scan(%quote
 &mergeVariables),1,%str(,));
 %do %while (&var ne);
 &andToken a.&var=b.&var
 %let j=%eval(&j+1);
 %let var =%scan(%quote
 &mergeVariables),&j,%str(,));
 %let andToken=and;
 %end;
 and
 %end;

 not (&goodCondition)
;

EXTENSIONS TO THE BASIC SYSTEM

The Data Checker presented above is capable of detecting and
reporting many kinds of potential data errors. In many data
management shops it can be used as is to eliminate work that is
currently being accomplished through customized, single-use
reporting programs. However, some shops may need to extend
the basic system to add additional functionality.

Two particularly useful extensions are resolvable message tokens
and rule builders. Both of these extensions have been
implemented at Ursa Logic using Base SAS and macro language
statements. The programming will not be detailed in this paper,
but a description of the concepts and logic involved may be
instructive for those who are interested in doing something
similar.

RESOLVABLE MESSAGE TOKENS

The Data Checker allows users to specify a failure message – a
text message that is automatically included on each record in the
ruleFailures table. Recall that the failure messages specified for
the two sample rules were:

Subject weight is not within the expected
range (100 – 200 lbs).

Date of physical exam is after date
of investigator signature.

In practice, it is often useful to customize failure messages with
values taken from the target record. Consider, for example, the
ruleFailures table that was generated by the sample weight range
rule. The table is reproduced below:

subject visit weight failureMessage

11MN16 1 98 Subject weight is not within the
expected range (100 – 200 lbs).

11MN16 3 212 Subject weight is not within the
expected range (100 – 200 lbs).

Note that the failure messages are identical for the two
questionable data values. This may not always be desirable.

Sometimes failure messages are copied verbatim into email
messages or memoranda that are generated to request
confirmation or correction of questionable values. It may be
useful in such cases for the Data Checker to produce a more
complete English-language statement of the problem. The
messages for the two records above might be expanded to the
following:

The weight recorded for subject 11MN16 at Visit 1 is 98,
which is not within the expected range (100 – 200 lbs).

The weight recorded for subject 11MN16 at Visit 3 is 212,
which is not within the expected range (100 – 200 lbs).

These new messages have been customized with three data
values taken from the target record: the subject number, the visit
number, and the subject weight. Customized failure messages
such as these can be created by embedding standard tokens in
the message specification and adding code to the Data Checker
to resolve the tokens at run-time. The following is an example of
a tokenized message specification:

The weight recorded for subject [subject] at Visit [visit] is
[weight], which is not within the expected range (100 – 200
lbs).

Any number of different conventions can be employed to denote

message tokens. In this example, tokens are indicated by square
brackets containing a field name. The Data Checker resolves a
token by replacing it with the value of the indicated field.

One way to implement resolvable message tokens is to develop a
stand-alone macro that can read a dataset, look for a field called
failureMessage and perform the replacements necessary to
expand the message text. The macro is invoked immediately
after the ruleFailures table is created. A Shown below is a portion
of the Data Checker system flowchart with the additional step
added.

Use the macro
variables to

construct a Proc
SQL statement
that produces a

table of rule
failures

Resolve
message tokens

Target datasets

Rule failures

Print the table

RULE BUILDERS

Imagine a study in which each subject is examined six times over
a period of twelve months. The validation rules for the study
database might include a rule like the following:

Physical exam dates for a subject will be in ascending
chronological order.

This rule is expressed easily and concisely in English, but in order
to represent it using the basic Data Checker specification
scheme, it would have to be split into five separate rules:

The date for exam 1 is less than the date for exam 2.
The date for exam 2 is less than the date for exam 3.
The date for exam 3 is less than the date for exam 4.
The date for exam 4 is less than the date for exam 5.
The date for exam 5 is less than the date for exam 6.

Entering specifications for five rules is not too demanding, but
suppose there were 100 exam dates that needed to be in
sequential order, or that the exact number of exams was unknown
at the time the rules were created. In a situation like that, it would
be handy to be able to create a “rule builder” that could generate
the required validation rules at run-time, based on the exam visits
that were actually recorded in the database.

This scenario is an example of a situation that arises often
enough to justify some additional programming support – rule sets
that are easier to generate by a program than to enter by hand.
The Data Checker developed at Ursa Logic includes a facility that
allows rule builders to be defined and used in such situations.

Rule builders are implemented as stand-alone macros. Each rule

builder takes a single rule specification as input and expands it
into specifications for multiple rules. To use a rule builder, the
user creates a rule specification, as usual, but instead of entering
an expression in the GoodCondition field, the user enters a call to
the appropriate rule builder macro. Here is an example of a rule
specification that uses a rule builder:

RuleID: Phys-3
Description: Physical exam dates should be in

chronological order.
DatasetA: PHYSEXAM
FilterA:
KeyVariablesA: SUBJECT,VISIT
RuleVariablesA: PHEXDT
Dataset:B
FilterB:
KeyVariablesB:
RuleVariablesB:
MergeVariables:
GoodCondition: %ASCENDING
FailureMessage: Physical exam dates are not in

chronological order.

To incorporate rule builders, the Data Checker adds a pre-
processing step after the rules are imported from Excel, but
before they are used to generate Proc SQL statements. A portion
of the system flow chart is shown below with the additional step
inserted:

Import rules from
Excel

Read the
specifications

for a rule

Validation rules
(SAS dataset)

Execute rule
builders

During the pre-processing step, the Data Checker loops through
the rule specifications. For each rule, it loads the rule
specifications into macro variables, then checks to see if
&goodCondition contains a call to a rule builder macro. If so, it
invokes the macro.

The rule builder’s responsibility is to take the information loaded
into the macro variables and use it to generate an entire set of
validation rules. The newly generated rules are then added to the
list of rules that will be used to construct Proc SQL statements.

The example above makes use of a rule builder called
%ASCENDING. This macro generates a set of rules to make
sure that a target variable (PHEXDT, in the example) is in
ascending order when the records are sorted according to the
specified key variables. Because %ASCENDING is completely
generic, it can be reused over and over again across projects to
simplify the process of specifying rules for fields that have
ascending data values across records.

CONCLUSION

A system like the Data Checker can radically reduce the time and
expense required to implement data validation rules for data
cleaning projects. As with any system that is designed for reuse
across multiple projects, careful validation is necessary to ensure
that the system performs as intended across the full range of
possible uses. The payoff for this effort is that a great deal of
project-specific programming – and the attendant validation work–
is eliminated.

CONTACT INFORMATION

Don Hopkins
Ursa Logic Corporation
2625 McDowell Road
Durham, NC 27705

Work Phone: 919.490.9025
Fax: 919.490.9088

Email: hopkins@ursalogic.com
Web: www.ursalogic.com

TRADEMARK NOTICE

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

